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Analytic Lyapunov exponents in a classical nonlinear field equation
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It is shown that the nonlinear wave equation] t
2w2]x

2w2m0]x(]xw)350, which is the continuum limit of
the Fermi-Pasta-Ulamb model, has a positive Lyapunov exponentl1, whose analytic energy dependence is
given. The result~a first example for field equations! is achieved by evaluating the lattice-spacing dependence
of l1 for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We also
discuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in the
dynamical description.

PACS number~s!: 05.45.2a, 41.20.Jb
e
la
o

o
p

rg
in
t

rt
e

ar

ing

s
d at

ion

is
e

rgy
n at-

. s
ss

ss

e, s
The numerical study that Fermi, Pasta, and Ulam mad
Los Alamos, on a chain of anharmonically coupled oscil
tors, represents a milestone in the development of the m
ern theory of nonlinear dynamics@1#. The surprising out-
comes of this first computer experiment in the history
physics have been very seminal. Among the other attem
to explain the apparent lack of thermalization of the ene
initially stored in one of the linear modes of the cha
Zabusky and Kruskal@2,3# remarked that a continuum limi
version of the Fermi-Pasta-Ulam~FPU! model leads to the
Korteweg–de Vries~KdV! equation, when thea model is
considered, and to a modified KdV equation when theb
model is considered. These are nonlinear, integrable pa
differential equations where a special class of solitary wav
which that Zabusky and Kruskal calledsolitons, exists and
can to some extent explain the FPU recurrences@4#.

In the present work we tackle the FPU-b model, de-
scribed by the Hamiltonian

H~p,q!5(
i 51

N F1

2
pi

21
1

2
~qi 112qi !

21
m

4
~qi 112qi !

4G , ~1!

and we consider another legitimate continuum limit@5# of
this system, described by the Hamiltonian

H~p,f!5E
0

L

dxF 1

2n
p~x!21

h

2
~¹f!21

m0

4
~¹f!4G , ~2!

and leading to the field equation~settingh5n51)

]2f

]x2
2

]2f

]t2
1m0

]

]x S ]f

]x D 3

50. ~3!

*Present address: Dipartimento di Fisica del Politecnico, C
Duca degli Abruzzi 24, 10129 Torino, Italy. Electronic addre
franzosi@athena.polito.it

†Electronic address: gatto@sc2a.unige.ch
‡Also at INFN, Sezione di Firenze, Italy. Electronic addre

pettini@fi.infn.it
§Also at INFN, Sezione di Firenze and INFM UdR di Firenz

Italy. Electronic address: pettini@arcetri.astro.it
PRE 611063-651X/2000/61~4!/3299~4!/$15.00
at
-
d-

f
ts
y
,

ial
s,

Also this continuum limit of the FPU model might appe
integrable on the basis of the following reasoning@6#. Let us
consider the Legendre transform:x5]xf, t5] tf, and x
5]xc, t5]tc with the relation c1f5xx1tt, whence
]x

2f5D]t
2c, ] t

2f5D]x
2c, where 1/D5]x

2c]t
2c2(]xt

2 c)2.
Substituting into Eq.~3! we can linearize it to

]2c

]x2
5~113m0x2!

]2c

]t2
, ~4!

which can be solved by variable separation by sett
c5F(x)G(t), where G96c2G50, and F96c2(1
13m0x2)F50. In principle, by inverting this Legendre
transform, Eq.~3! could be analytically solved. However, a
we shall discuss, the method sketched above can only lea
most tolocal and not toglobal invertibility, both in time and
space. Actually we are going to show that the field equat
~3! for the FPUb model in the continuum limit is chaotic
~the Lyapunov characteristic exponent of the solutions
positive!. The pattern of the Lyapunov exponent that w
shall derive is shown in Fig. 1. The crossover in the ene
dependence of the largest Lyapunov exponent has bee
tributed in Refs.@7# to a ~smooth! transition between weak

o
:

:

FIG. 1. Analytic Lyapunov exponent for the continuum limit a
a function of the physical parameters.
R3299 © 2000 The American Physical Society



e
ly
th

ot
y
tte
t a
ie
e

ou
el
e

of

d

to

io
he

iel
n

ta

l-
low

n-
i-

t

s

-

-

nite
n-
a-

e

e

ich

the
ical

n-
x-
os
the
of
e
e
ni-
e

-
er-

et-

v
og-

RAPID COMMUNICATIONS

R3300 PRE 61FRANZOSI, GATTO, PETTINI, AND PETTINI
and strong chaos@8#. The persistence of such a crossov
also in the continuum limit is a remarkable fact. Loose
speaking, at high energy, in the strongly chaotic regime,
spatiotemporal behavior of the fieldf(x,t) should look like
a fully developed ‘‘turbulent’’ field, whereas this should n
be the case at low energy, where a weakly ‘‘turbulent’’ d
namics would set in. Our calculation shows that, no ma
whether weak or strong, chaos is present in the system a
energy, and since the system is Hamiltonian, we can bel
that a standard statistical mechanical description is allow
This raises an important problem that we now discuss.

For the lattice system corresponding to Eq.~2! the stan-
dard canonical partition function

Z5*) i 51
N dp idf i exp@2bH~$p i%,$f i%!#

in the limit of lattice spacinga→0 becomes

Z5E Dp~x! Df~x!expH 2bE
0

L

dxF1

2
p2

1
1

2
~¹f!21

m0

4
~¹f!4G J . ~5!

It is interesting at this point to raise a problem that comes
when some expected dynamical properties of the fi
f(x,t) are compared to their statistical counterparts work
out by means ofZ. By means of an orthogonal change
coordinates, the Hamiltonian~1! is rewritten in the form
@7#

H~Pk ,Qk!5(kEk5(k@
1
2 ~Pk

21vk
2Qk

2!

1m(k1 ,k2 ,k3
C~k,k1 ,k2 ,k3!QkQk1

Qk2
Qk3

#

,

where the summations run fromk51 to k5kmax for a lat-
tice, and fromk0 to kmax5` in the continuum limit. In the
new variables the partition function becomesZ̃
5*)k51

kmaxdPkdQkexp@2bH($Pk%,$Qk%)# which, in the limit
kmax→`, gives

Z̃5*DP~k!DQ~k!exp@2b*k0

` dkH„P~k!,Q~k!…#,

where k052p/L.0 for a finite support. The generalize
equipartition theorem@11# states that̂ Qk]H/]Qk&5const
independently ofk, and from Ref.@10# we know that for the
FPU b model such an average iŝQk]H/]Qk&.k2Qk

2(1
1a), where a is a constant, and thereforeQk

2.k22(1
1a)21, which, being independent ofkmax, still holds true in
the continuum limit, i.e.,uf̂(k)u2.k22(11a)21. Whence
an ultraviolet catastrophe, i.e. the divergence of average
energy whenkmax→` also on a finite support@0,L#. How-
ever, such a difficulty is absent in the dynamical equat
~3!, which, being derived from a Hamiltonian, must keep t
energy constant, therefore finite if it is finite at timet50.

The point is that statistical mechanics and dynamics y
very differentlarge-k spectral properties. In fact, already o
the basis of the purely dimensional analysis discussed
Refs.@9#, we can easily find that in order to bound the to
energy~on a finite support@0,L#) to a finite value, the ultra-
r
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d

in
l

violet asymptotic power spectrum off(x) must be bounded

above byuf̂(k)u2;k23, which means that the high spatia
frequency modes cannot have the same energy of the
spatial-frequency modes.

The rough estimate of the ultraviolet spectrum of the co
tinuum model can be improved as follows. Any smooth in
tial conditionf(x,0)PC `(R) of the equation of motion~3!
has to remain smooth at any further timet, i.e., f(x,t)
PC `(R). Now, the analytic continuationF(z,t) of f(x,t)
will be of classC v on a strip whose widthd will be deter-
mined at any given timet by the distance of the closes
singularity to the real axis. Ifzn

s5xn
s1 iyn

s are the locations
of the singularities ofF(z,t), to the leading order one find

@12,13# F̂(k);k2a(ncneikzn
s

for k→`, where, apart from
the power-law prefactork2a, the sum is carried over the
Im z.0 half plane andcn are suitable coefficients. The fac

torseikzn
s
5eikxn

s
e2kyn

s
efficiently single out the closest singu

larity to the real axis to giveuF̂(k)u2<Ae2dk at k→`,
which provides a better ultraviolet estimate ofuf̂(k)u2 stem-
ming from the constraint of differentiability off(x). Need-
less to say, this ultraviolet exponential fall off ofuf̂(k)u2
guarantees the finiteness of the total energy for any fi
support@0,L#. It is not unreasonable to think that a relatio
ship might exist between the minimum width of the sp
tiotemporal cell where the Legendre transform of Eq.~3!
~sketched at the beginning of this paper! is invertible; that is,
where Eq.~3! is locally integrable, and the width of th
„k,v(k)… cell where the power spectrumuf̂(k)u2 exponen-
tially falls off. There is apparently no way of reproducing th
ultraviolet exponential decay ofuf̂(k)u2, which is naturally
brought about by the dynamical equation~3!, within the sta-
tistical mechanical framework. The fieldf(x,t) can be cha-
otic in space and time only down to some small scale wh
naturally provides a cutoff that, inserted intoZ̃, would re-
move the mentioned divergences. Let us mention that
physical meaning of a rigorous treatment of another class
nonlinear field equation~complex Ginzburg-Landau! @14# is
coherent with the theoretical scenario depicted above.

To come now to our main result, chaoticity in the co
tinuum limit, we calculate the Lyapunov exponent by e
tending to such a limit a method to tackle Hamiltonian cha
that has already given excellent analytic predictions of
largest Lyapunov exponent in the thermodynamic limit
the FPUb-model@15# on a lattice. This method exploits th
mathematical identification of an Hamiltonian flow with th
geodesic flow on a suitable Riemannian ‘‘mechanical ma
fold’’ consisting of an enlarged configuration spacetim
($q0[t,q1, . . . ,qN% plus one real coordinateqN11), whose
arc-length ds2522V(q)(dq0)21ai j dqidqj12dq0dqN11

defines the so-called Eisenhart metricg
E

@16#; V is the po-
tential. In the geometrical framework, the~in!stability of the
trajectories is the~in!stability of the geodesics, and it is com
pletely determined by the curvature properties of the und
lying manifold according to the Jacobi equation@17# for the
geodesic deviation. This equation, written for Eisenhart m
ric, entails the usual tangent dynamics equationj̈ i

1(]2V/]qi]qj )j j50, which is used to measure Lyapuno
exponents in standard Hamiltonian systems. Having rec
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nized its geometric origin, it can be transformed, under c
tain hypotheses@15#, into an effectivescalar stability equa-
tion that, independentlyof the knowledge of dynamica
trajectories, provides a measure of their average degre
instability. This effective stability equation is in the form o
a stochastic oscillator equationc̈1@k01skh(t)# c50 @15#,
where k05^KR&/N, sk

25Š(KR2^KR&)2
‹/N, and KR[DV

5( i 51
N ]2V/]qi

2 is the Ricci curvature of the mechanic
manifold, computed with gE ; h(t) is a Gaussian
d-correlated random process of unit variance. The expon
tial growth ratel of (ċ21c2) is computed exactly to pro
vide the following estimate of the largest Lyapunov exp
nent:

l5
L

2
2

2k0

3L
, L5F2sk

2t1AS 4k0

3 D 3

14sk
4t2G1/3

,

~6!

wheret5pAk0/(2@k0(k01sk)#1/21psk) is a characteris-
tic time scale worked out on the basis of geometrical ar
ments. In the limitsk /k0!1 one findsl}sk

2 @15#. In this
geometric picture, chaos is mainly originated by the param
ric instability activated by the fluctuating curvature ‘‘felt
by the geodesics.

The quantitiesk0 andsk
2 can be exactly computed for th

FPU b model as microcanonical averages by taking adv
tage of the analytically known canonical partition functio
and by using the conversion formulas relating canonical
microcanonical averages. The final analytic expressions
given in Ref.@15#, and among them we report those need
here,

1

N
^KR&m~u!521

3

u
D~u!, ~7!

1

N
^d2KR&m~u!5

1

N

9

u2
@222uD~u!2D2~u!#

2
b2

cv~u! S ]^KR /N&G

]b D 2

, ~8!

e~u!5
1

8m F 3

u2
1

1

u
D~u!G , ~9!

where D(u)5@D23/2(u)/D21/2(u)#, with D23/2 and D21/2
parabolic cylinder functions, the parameteru is a function of
the inverse temperatureb throughu5(b/2m)1/2, ande(u) is
the energy per degree of freedom of the system. The mi
canonical average of curvature fluctuations involves a c
rection term to their canonical average which involves
specific heatcv(u) computed, as usual, as the second deri
tive of the free energy. These quantities enter the formula~6!
to give the analytic values of Lyapunov exponents at diff
ent energies. Now, it is useful to work out simple analy
expressions ofl1(e) at low and high energy densities. I
order to obtain them, notice that from Eq.~9! one getsme
5 f (u), a function ofu; this function is invertible, because i
the absence of phase transitionse(T) (T is the temperature!
is always single valued. Therefore, we can writeu
r-

of

n-

-

-

t-

-

d
re
d

o-
r-
e
-

-

5f21(me) and consequentlyk0 andsk
2 can be expressed a

functions ofme. Making use of the asymptotic expressio
of the parabolic cylinder functions, this inversion is eas
obtained in the two opposite limitse→0 and e→`. Also
simple analytic expressions fork0 , sk

2 , and t can be ob-
tained in these two limits. Ate→0, andu@1, we get

k05216me2
27

2
m2e21O~e3!, ~10!

sk
2536m2e21O~e3!. ~11!

Let us remark that there is some arbitrariness in the der
tion of t in Ref. @15#; however, from Eq.~6! we see that the
only relevant constraint ont is that sk

2t→0 for e→0, so
thatL ~andl1 with it! can be expanded in series of the sm
quantitysk

2t, yielding

l1~e!5
sk

2t

2k0
1•••59m2e2t1•••, ~12!

which, with the explicit computation oft gives

l1~e!5
9

4

p

A2
m2e21O~e3!, ~13!

which is in strikingly good agreement with the low energ
‘‘experimental’’ results forl1. Similar developments can b
worked out in the limite→` ~and sou!1) giving

k0.
4p

G2S 1

4DA24me, sk
2.16meS 32

32p2

G4S 1

4D D ~14!

by computing againt(e) we find t(e).c(me)21/4 yielding

l1~e!.c8~me!1/4, ~15!

where c and c8 are constants. Also this scaling law is
perfect agreement with numerical results. The compari
between the full analytic prediction ofl1(e), obtained by
substituting Eqs.~7! and ~8! into Eqs.~6!, shows a perfect
agreement with the outcomes of a standard numerical c
putation of the largest Lyapunov exponent at different valu
of e. Let us remark that the analytic prediction ofl1(e) is
obtained in theN→` limit, which is implicit in the compu-
tation of the microcanonical averages of the Ricci curvat
and of its fluctuations. Now, as the analytic expression in
~6! is in excellent agreement with the numerical data o
tained for discrete~particle! systems at different values ofN,
there is no reason to doubt that such an agreement will h
true also whenN is varied while keeping the total lengthL of
the system fixed, i.e., in thecontinuum limit. The nontrivial
difference between this limit and thermodynamic limit
Ref. @15# is thatN→` while the energy remains finite in th
former case, whereas bothN and energy diverge in the latte
case. Nevertheless, by suitably mapping the continuum l
case onto the already solved thermodynamic limit case
can solve also the former. Thus, let us now consider
Hamiltonian~2! discretized on a lattice of lengthL and spac-
ing a ~with L5Na),
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H~$p i%,$f i%!5(
i 51

N

aFp i
2

2n
1

h

2 S f i 112f i

a D 2

1
m0

4 S f i 112f i

a D 4G , ~16!

where the dimensional constantsn,h have been introduced
We have thus obtained a discrete~lattice! system, similar to
that described by Hamiltonian~1!; in order to make a direc
comparison between the two Hamiltonians of Eqs.~16! and
~1!, we must now absorbe the dimensional parametera into
the constants of the Hamiltonian. By means of the followi
rescaling of the coordinatesf i and of the timet: j i5f i /a,
with a5Aa/h, t85t/g andg5Ah/n, and denoting by$z i%
the momenta conjugated to$f i%, H of Eq. ~16! is put in the
form

Ha~$z i%,$j i%!5(
i 51

N F z i
2

2
1

1

2
~j i 112j i !

2

1
m0

ah2

1

4
~j i 112j i !

4G , ~17!

which is just the form ofH in Eq. ~1!, so that we can apply
the geometric treatment of dynamical chaos also to the
tems described by this family of HamiltoniansHa . The pre-
cise meaning of this comparison is the following. The co
tinuum Hamiltonian~2! hasH of Eq. ~16! as its discretized
version, where the parametersh, n, m0 are equal to the val-
ues of the continuum model. After the recasting of Eq.~16!
into the form ~17! we can easily derive the value of th
coupling constantm of the discrete FPU model~1! so that a
correspondence can be made between the discrete mode
the lattice version~17! of the continuum model for any valu
of the lattice spacinga. Evidently the relation between th
,

t

iti

la
o

r
ex
li
s-

-

and

coupling constants ism5m0 /ah2, and this tells that in order
to represent the solutions of a set of systems~16! by means
of those of a set of discrete systems~1! with a finer and finer
sampling of the spatial support of lengthL, i.e., letting a
→0, the coupling constantm must be larger and larger. T
the lattice-discretized system~17! we can now apply all the
above equations for the geometric description of chaos, p
vided that we replacem with m0 /ah2. In passing to the
continuum limit we have to leta→0 while the total energy
of the systemEtot is kept fixed. Hence the energy densitye
has to diminish asEtot /N, but N5L/a and then e
5Etota/L. Hence, we obtain

me5
m0Etota

ah2L
5const. ~18!

From Eq.~18! it then follows that Eqs.~7! and~8! for k0 and
sV

2 are stable with respect to the limit to the continuum a
so is the largest Lyapunov exponent. Thereforethe field
equation~3! is chaoticand its Lyapunov exponent has th
pattern shown by Fig. 1. This constitutes an example of a
lytic calculation ofl1(e) for a field equation. Implicit in our
computation is the possibility of approximating, as acc
rately as needed, a partial differential equation by means
finite ~truncated! system of ordinary differential equations
for which Lyapunov exponents are well defined.

In conclusion, we have shown that the continuum limit
the Fermi-Pasta-Ulamb model is chaotic. We have dis
cussed the interesting problematics raised by this resul
the statistical description of classical field theory models t
might be relevant also to the Wick-rotated quantum fie
theories.

It is a pleasure to thank M. Casartelli for useful com
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