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It is shown that the nonlinear wave equatiéfe — 92¢ — ody(dye) =0, which is the continuum limit of
the Fermi-Pasta-Ulan® model, has a positive Lyapunov exponant whose analytic energy dependence is
given. The resulta first example for field equations achieved by evaluating the lattice-spacing dependence
of N, for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We also
discuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in the

dynamical description.

PACS numbd(s): 05.45—a, 41.20.Jb

The numerical study that Fermi, Pasta, and Ulam made also this continuum limit of the FPU model might appear
Los Alamos, on a chain of anharmonically coupled oscilla-integrable on the basis of the following reasonjég Let us
tors, represents a milestone in the development of the modonsider the Legendre transformg=dy ¢, 7=0d;¢, and x

ern theory of nonlinear dynamidd]. The surprising out-

=dy4, t=49.4 with the relation ¢+ $=xx+tr, whence

comes of this first computer experiment in the history ofa2¢=Da%y, 92¢=Dad?y, where 1D=a2ya’py—(,4)>.
physics have been very seminal. Among the other attemptSubstituting into Eq(3) we can linearize it to
to explain the apparent lack of thermalization of the energy

initially stored in one of the linear modes of the chain,
Zabusky and Kruskdl2,3] remarked that a continuum limit
version of the Fermi-Pasta-UlatfFPU) model leads to the
Korteweg—de VriegKdV) equation, when ther model is
considered, and to a modified KdV equation when the

model is considered. These are nonlinear, integrable partiak=F(x)G(7),
differential equations where a special class of solitary waves; 3umox?)F=0.

which that Zabusky and Kruskal callesblitons exists and
can to some extent explain the FPU recurrerides

In the present work we tackle the FP®-model, de-
scribed by the Hamiltonian

N1, 1
H(|o,q)=i=2l Epi2+§(Qi+l_qi)2+%(qi+1_qi)4}a (1)

and we consider another legitimate continuum lif&t of
this system, described by the Hamiltonian

L1 Ui Mo
_ 2,7 2 4
H(W,¢)—JO dx 5 () +5 (Vo) '+ (Vo) (2
and leading to the field equatideetting p=v=1)
Pp P d[ap\®
o Mo\ ax) ©
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which can be solved by variable separation by setting
where G”"*+c?G=0, and F"=c?(1

In principle, by inverting this Legendre
transform, Eq(3) could be analytically solved. However, as
we shall discuss, the method sketched above can only lead at
most tolocal and not toglobal invertibility, both in time and
space. Actually we are going to show that the field equation
(3) for the FPUB model in the continuum limit is chaotic
(the Lyapunov characteristic exponent of the solutions is
positive. The pattern of the Lyapunov exponent that we
shall derive is shown in Fig. 1. The crossover in the energy
dependence of the largest Lyapunov exponent has been at-
tributed in Refs[7] to a (smooth transition between weak
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FIG. 1. Analytic Lyapunov exponent for the continuum limit as
a function of the physical parameters.

10+

1077

R3299 © 2000 The American Physical Society



RAPID COMMUNICATIONS

R3300 FRANZOSI, GATTO, PETTINI, AND PETTINI PRE 61

and strong chaof8]. The persistence of such a crossoverviolet asymptotic power spectrum @f(x) must be bounded
also in the continuum limit is a remarkable fact. Loosely gpove by|¢(k)|2~k 3, which means that the high spatial-

speaking, at high energy, in the strongly chaotic regime, th?requency modes cannot have the same energy of the low
spatiotemporal behavior of the fieltl(x,t) should look like spatial-frequency modes.

a fully developed “turbulent” field, whereas this should not The rough estimate of the ultraviolet spectrum of the con-

be the case at low energy, where a weakly “turbulent dy'tinuum model can be improved as follows. Any smooth ini-

namics would set in. Our calculation shows that, no matter. " o ; ;
whether weak or strong, chaos is present in the system at arEIIal condition $(x,0) € C*(E) of the equation of motior3)

energy, and since the system is Hamiltonian, we can believﬁ‘licsmt(?R relilnaln imoothl a.t any furth.erdilmel.e.% ¢061)

that a standard statistical mechanical description is allowed ¢ ()- Now, the analytic continuatio (z,1) of $(x,1)

This raises an important problem that we now discuss. will be of classC* on a strip whose widtts will be deter-
For the lattice system corresponding to E2). the stan- mined at any given time by the distance of the closest

dard canonical partition function singularity to the real axis. I£;=x;+iy;, are the locations
N of the singularities ofP(z,t), to the leading order one finds
Z=JT;= dmd¢i exd — BH({ i} {di})] [12,13 d(K)~k =, c,ek% for k—o, where, apart from

the power-law prefactok™ ¢, the sum is carried over the
Im z>0 half plane andt,, are suitable coefficients. The fac-
tors /%= el*ne Wi efficiently single out the closest singu-
larity to the real axis to givd®d(k)|><Ae * at k—o,

] which provides a better ultraviolet estimate| gf(k)|? stem-

in the limit of lattice spacingg— 0 becomes

1
Pk

Z=f Dwr(X) Dd)(x)exq’ —Bdex
0

(5) ming from the constraint of differentiability ap(x). Need-
less to say, this ultraviolet exponential fall off b&)(k)|2

It is interesting at this point to raise a problem that comes ouguarantees the finiteness of the total energy for any finite
when some expected dynamical properties of the ﬁe|c§uppor'§[0,L]. I_t is not unreasonat_)le_ to thlnk_ that a relation-
&(x,t) are compared to their statistical counterparts worke@NP Might exist between the minimum width of the spa-

out by means ofz. By means of an orthogonal change of tiotemporal cell where the Legendre transform of E8)
coordinates, the Hamiltoniafl) is rewritten in the form (Sketched at the beginning of this papisrinvertible; that is,

1 Mo
+5(V)*+ (Vo)

[7] where Eq.(3) is locally integrable, and the width of the
(k,w(k)) cell where the power spectrufg(k)|? exponen-

H(Py,Qu) = S¢Ex=Su[ 3(Pi+ 0fQp) tially falls off. There is apparently no way of reproducing the
ultraviolet exponential decay dth(k)|2, which is naturally
T uZk, K, ks CK K1 Kz, K3) QuQi, Qk, Qi | brought about by the dynamical equati®), within the sta-

, tistical mechanical framework. The fielfl(x,t) can be cha-
otic in space and time only down to some small scale which

naturally provides a cutoff that, inserted inf would re-
) . ) ~ move the mentioned divergences. Let us mention that the
new. variables the partition function becomeZ  ,nysical meaning of a rigorous treatment of another classical
= [T,23d P dQuexd — BH({Pid{Qi})] which, in the limit  nonlinear field equatiofcomplex Ginzburg-Landay14] is

where the summations run froki=1 to k=Kk,,, for a lat-
tice, and fromkg to K,a,=02° in the continuum limit. In the

Kmax— ®, gives coherent with the theoretical scenario depicted above.
_ To come now to our main result, chaoticity in the con-
Z:fiDP(k)iDQ(k)exp[—/BffodkH(P(k),Q(k))], tinuum limit, we calculate the Lyapunov exponent by ex-

tending to such a limit a method to tackle Hamiltonian chaos
where ko=27/L>0 for a finite support. The generalized that has already given excellent analytic predictions of the
equipartition theorenjl11] states thafQ,dH/dQ,)=const largest Lyapunov exponent in the thermodynamic limit of
independently ok, and from Ref[10] we know that for the the FPUB-model[15] on a lattice. This method exploits the
FPU 8 model such an average {€Q,dH/dQ,)=k?Q3(1  mathematical identification of an Hamiltonian flow with the
+a), where « is a constant, and therefo@ﬁzkﬂ(l geodesic flow on a suitable Riemannian “mechanical mani-

+a) "1, which, being independent &f, . still holds true in ]E?Ido” fonlsisting Nc}ff i':m enlargefl con(;i_gug,gig?) spﬁcetime
the continuum limit, i.e.|d(k)|2=k 2(1+a) L. Whence W4 =0L.d.....07 plus one real coordina , WHose
an ultraviolet catastrophe, i.e. the divergence of average tot%rc_—length ds?=—2V(q)(d’)*+a;dg'dg +2d q@dg™
energy wherk,,,— also on a finite suppoftd,L]. How- efines the so-called Eisenhart metgic [16]; V is the po-
ever, such a difficulty is absent in the dynamical equatiorfential. In the geometrical framework, tii@)stability of the
(3), which, being derived from a Hamiltonian, must keep thetrajectories is thein)stability of the geodesics, and it is com-
energy constant, therefore finite if it is finite at tirve 0. pletely determined by the curvature properties of the under-
The point is that statistical mechanics and dynamics yieldying manifold according to the Jacobi equatidiv] for the
very differentlarge-k spectral properties. In fact, already on geodesic deviation. This equation, written for Elsenhart_ met-
the basis of the purely dimensional analysis discussed inc, entails the usual tangent dynamics equatigh
Refs.[9], we can easily find that in order to bound the total + (6°V/dq;99') € =0, which is used to measure Lyapunov
energy(on a finite supporfO,L]) to a finite value, the ultra- exponents in standard Hamiltonian systems. Having recog-
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nized its geometric origin, it can be transformed, under cer=f"(ue) and consequently, and o2 can be expressed as
tain hypothese§15], into an effectivescalar stability equa- functions of we. Making use of the asymptotic expressions
tion that, independentlyof the knowledge of dynamical of the parabolic cylinder functions, this inversion is easily
trajectories, provides a measure of their average degree @btained in the two opposite limite—~0 and e—x. Also
instability. This effective stability equation is in the form of simple analytic expressions fotg, gi, and 7 can be ob-

a stochastic oscillator equatiant [ ko+ o 7(t)] #=0[15],  tained in these two limits. Ae—0, and6>1, we get
where ko=(Kg)/N, o2={(Kg—(Kg))?)/N, and Kg=AV

=Ei“f=1c72V/(9qi2 is the Ricci curvature of the mechanical Ko=2+6e— 2—7,LL262+O(63), (10)
manifold, computed with gg; #(t) is a Gaussian 2

S-correlated random process of unit variance. The exponen-

tial growth ratex of (2+ ¢?) is computed exactly to pro-
vide the following estimate of the largest Lyapunov expo-

o2=36u%e’+ (). (12)

Let us remark that there is some arbitrariness in the deriva-

nent: tion of 7 in Ref.[15]; however, from Eq(6) we see that the
A 2 2 13 only relevant constraint om is that oir—>0 for e—0, so
A= —— %, A=|20%7+ [| ZKo +40472| that A (and\ with it) can be expanded in series of the small
2 3 3 ©) quantity o2 7, yielding
2
o.T
where 7= m\/ko/ (2] ko( Ko+ o, ) 1>+ 70 ,) is a characteris- Ai(€)= 2": +. =9ulrt -, (12)
0

tic time scale worked out on the basis of geometrical argu-

ments. Ip the I|m|ta,</f<0§1 one fmd's).\ocak [15]. In this which, with the explicit computation of gives
geometric picture, chaos is mainly originated by the paramet-

ric instability activated by the fluctuating curvature “felt” 9 -
by the geodesics. N(e)=— —M2€2+ O(€%), (13)
The quantitiesc, andai can be exactly computed for the 4 \/E

FPU B model as microcanonical averages by taking advan- = == | . _
tage of the analytically known canonical partition function Which is in strikingly good agreement with the low energy
and by using the conversion formulas relating canonical andeXPerimental” results forx . Similar developments can be
microcanonical averages. The final analytic expressions a¥orked out in the limite—o (and sof<1) giving

given in Ref.[15], and among them we report those needed

4 327?
here, Ko= —1\/24/.L6, 0',2<216,LL6 3——1 (14
L 3 g aH
N(KR>“(9)=2+ EA(H), (7)
by computing again(e) we find 7(e) =c(ue) " yielding
1 19 — 1/4
N {(FKR“O) = [2-20A(0) = A%(0)] Ai(€)=c'(ne)™, (19
wherec and ¢’ are constants. Also this scaling law is in
B2 [ 9(KgIN)C\? perfect agreement with numerical results. The comparison
- c,(0) 9B ' ®) between the full analytic prediction of;(€), obtained by

substituting Eqs(7) and (8) into Egs.(6), shows a perfect
1073 1 agreement with the outcomes of a standard numerical com-
€(0)= —| —+ = A( 9)1, (9) putation of the largest Lyapunov exponent at different values
8u|p? 0 of e. Let us remark that the analytic prediction of(e) is
obtained in theN— oo limit, which is implicit in the compu-
where A(0)=[D _3(0)/D_1,(0)], with D_3, andD_,,  tation of the microcanonical averages of the Ricci curvature
parabolic cylinder functions, the parameteis a function of  and of its fluctuations. Now, as the analytic expression in Eq.
the inverse temperatug@ through6=(8/2u)"? ande(6) is  (6) is in excellent agreement with the numerical data ob-
the energy per degree of freedom of the system. The micratained for discretéparticle systems at different values bk
canonical average of curvature fluctuations involves a corthere is no reason to doubt that such an agreement will hold
rection term to their canonical average which involves thetrue also whem is varied while keeping the total lengthof
specific heat,(¢) computed, as usual, as the second derivathe system fixed, i.e., in theontinuum limit The nontrivial
tive of the free energy. These quantities enter the forrt@)la  difference between this limit and thermodynamic limit in
to give the analytic values of Lyapunov exponents at differ-Ref.[15] is thatN— o while the energy remains finite in the
ent energies. Now, it is useful to work out simple analyticformer case, whereas bothand energy diverge in the latter
expressions oh(e) at low and high energy densities. In case. Nevertheless, by suitably mapping the continuum limit
order to obtain them, notice that from E@) one getsue  case onto the already solved thermodynamic limit case we
=1f(#6), a function of6; this function is invertible, because in can solve also the former. Thus, let us now consider the
the absence of phase transitias(§) (T is the temperatuje  Hamiltonian(2) discretized on a lattice of lengthand spac-
is always single valued. Therefore, we can writt inga (with L=Na),




RAPID COMMUNICATIONS

R3302 FRANZOSI, GATTO, PETTINI, AND PETTINI PRE 61
N w2 7| biv1—d;i\2 coupling constants ig = uy/an?, and this tells that in order
H{m}.{p}H) =2 a —'+—(; to represent the solutions of a set of systeéi by means
=1 [2v 2 a of those of a set of discrete systefs with a finer and finer
ol bisi— i\t sampling of the spatial support of length i.e., lettinga
2\ || (16) —0, the coupling constant must be larger and larger. To

the lattice-discretized systefit7) we can now apply all the
above equations for the geometric description of chaos, pro-
vided that we replace. with ug/azn?. In passing to the
continuum limit we have to lea— 0 while the total energy

where the dimensional constantsy have been introduced.
We have thus obtained a discrétattice) system, similar to
that described by Hamiltoniafi); in order to make a direct ) X ;
comparison between the two Hamiltonians of Ed$) and of the Systent,q, Is kept fixed. Hence the energy denséy
(1), we must now absorbe the dimensional paramateto ~ Nas 0 diminish asEy, /N, but N=L/a and then e
the constants of the Hamiltonian. By means of the following = Etor@/L. Hence, we obtain

rescaling of the coordinataes; and of the timet: &= ¢;/«,

with a=\a/ 75, t'=t/y andy=/5/v, and denoting by ;} _ MoEr@
the momenta conjugated {@,;}, H of Eq. (16) is put in the me= 2 =const. (18)
form K
N 21 From Eq.(18) it then follows that Egs(7) and(8) for x, and
Ha({&},{gi}):;l > t5 (e &)? o3 are stable with respect to the limit to the continuum and

so is the largest Lyapunov exponent. Thereftie field
equation(3) is chaoticand its Lyapunov exponent has the
, (17) pattern shown by Fig. 1. This constitutes an example of ana-
lytic calculation of\1(¢€) for a field equation. Implicit in our
. . computation is the possibility of approximating, as accu-
which is just the form oH in Eq. (1), so that we can apply (ately as needed, a partial differential equation by means of a
the geometric treatment of dynamical chaos also to the sysiite (truncatedl system of ordinary differential equations,
tems described by this family of Hamiltoniakk,. The pre- 5 which Lyapunov exponents are well defined.
cise meaning of this comparison is the following. The con- |5 conclusion, we have shown that the continuum limit of
tinuum Hamiltonian(2) hasH of Eq. (16) as its discretized i, Fermi-Pasta-Ulang model is chaotic. We have dis-

version, where the parametess v, uo are equal to the val- ¢ ssed the interesting problematics raised by this result on
ues of the continuum model. After the recasting of B e statistical description of classical field theory models that

into the form (17) we can easily derive the value of the might be relevant also to the Wick-rotated quantum field
coupling constani of the discrete FPU modél) so that a  inegries.

correspondence can be made between the discrete model and
the lattice versiori17) of the continuum model for any value It is a pleasure to thank M. Casartelli for useful com-
of the lattice spacin@. Evidently the relation between the ments.
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